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SUMMARY 

The applicability of a finite element-differential method to the computation of steady two-dimensional low- 
speed, transonic and supersonic turbulent boundary-layer flows is investigated. The turbulence model chosen 
for the Reynolds shear stress and turbulent heat flux is the k-t. two-equation model. Calculations are extended 
up to the wall and the exact values of the dependent variables at the wall are used as boundary conditions. A 
number of transformations are carried out and the assumed solutions at a longitudinal station are represented 
by complete cubic spline functions. In essence, the method converts the governing partial differential 
equations into a system of ordinary differential equations by a weighted residuals method and invokes an 
ordinary differential equation solver for the numerical integration of the reduced initial-value problem. The 
results of the computations reveal that the method is highly accurate and efficient. Furthermore, the accuracy 
and applicability of the k-e turbulence model are examined by comparing results of the computations with 
experimental data. The agreement is very good. 
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INTRODUCTION 

The development of a general calculation procedure for turbulent boundary-layer flows has been 
the objective of numerous research efforts. Since the computation of an entire flow field by direct 
numerical solution of the time dependent conservation equations is at present impossible, the usual 
point of departure in practical applications is an averaged version of the conservation equations. 
The averaged equations involve new unknown variables which must be modelled. The 
computations presented in this study were carried out using the k--E two-equation turbulence 
model which has become very popular in computing incompressible turbulent flows. However, its 
application to compressible flows has received little attention. ’,’ The present paper is mainly 
concerned with boundary-layer flows which are influenced in an important way by compressibility. 
In contrast with previous work calculations are extended up to the wall and the exact values of the 
dependent variables at the wall are used as boundary conditions. 

The coupling of the k-E turbulence model with the averaged conservation equations leads to a 
parabolic system of partial differential equations. Consequently, numerical methods initially 
developed for incompressible laminar boundary-layer flow problems can be used for the solution 
of turbulent flow problems on the condition that they provide means for coping with at least two 
major characteristics of turbulent boundary layers that require special numerical treatment: the 
high rate of the boundary-layer thickness growth and the very large gradients occurring at the 
immediate vicinity of the wall. In addition, profiles for turbulence quantities at the initial station for 
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arbitrary Reynolds number, Mach number and wall temperature conditions are required. 
Provision of these profiles can be difficult owing to the lack of experimental data or a priori 
knowledge of the behaviour of the model predictions. 

A large variety of numerical methods for solving parabolic partial differential equations have 
been used to calculate boundary-layer flows with various levels of success. The Hartree- 
Womersley method3 has been employed by Smith and Clutter4 to solve the equations for laminar 
boundary layers and by Herring and Mellor5 for turbulent flows. Finite-difference schemes, 
ranging from simple conventional ones to more sophisticated variants, have been used extensively. 
Pletcher‘*’ used the DuFort-Frankel explicit scheme to calculate incompressible and compres- 
sible turbulent boundary layers. Implicit schemes of Crank-Nicolson type have been applied to 
compressible turbulent boundary layers by Harris* and Cebeci et aL9 among others. Patankar and 
Spalding” obtained a finite-difference scheme by expressing each term in the governing equations 
as an integrated average over a small control volume defined by the grid. Keller and Cebecill 
successfully applied the box-scheme to boundary-layer flow problems. In general, finite-difference 
schemes although simple, easily formulated and accurate, require special measures in selecting the 
grid size in the vicinity of a separation point, because the separation point of a boundary-layer flow 
is not known beforehand. Applications of the finite element method to turbulent boundary layers 
have been reported among others by Soliman and Baker12 and Fletcher and Fleet.13 

In the present work, the accuracy and efficiency of a finite element-differential method proposed 
by Hsu14 and extensively tested in laminar flowsi5 is investigated for the class of compressible 
turbulent boundary-layer flows. A number of appropriate transformations are first carried out. 
The transformed flow region is divided into a number of strips parallel to the body surface and the 
unknown functions at a longitudinal station are represented by complete cubic splines. The 
governing partial differential equations are then reduced to a system of first-order non-linear 
ordinary differential equations by a weighted residual method and the reduced initial-value 
problem is numerically integrated by an ordinary differential equation solver. 

The method is applied to low-speed, transonic and supersonic flows. The obtained results show 
that the finite element-differential method is very efficient and accurate provided that a very 
limited number of numerical parameters are properly selected. 

The paper is built up as follows. In Section 2 the governing equations for the flows considered are 
presented, and in Section 3 attention is focused upon the turbulence model and its applicability to 
compressible flows. In Section 4 alternative forms of the boundary-layer governing equations are 
introduced, and in Section 5 the method of solution is described. Numerical results for several 
boundary-layer flows are presented in Section 6. 

2. GOVERNING EQUATIONS 

For the class of steady, two-dimensional, compressible, turbulent, perfect gas boundary-layer flows 
the governing equations, neglecting body forces, are16 

a a -  -(Pii) + -(pu) = 0 ax aY 
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where 

x = co-ordinate along the body surface 
y = co-ordinate normal to the body surface 
u = velocity component in x-direction 
o = velocity component in y-direction 
p = local fluid density 
H =total enthalpy 
p = dynamic viscosity 
Pr = molecular Prandtl number of the fluid 
p = static pressure 
R = gas constant 
cp = specific heat at constant pressure 

In equations (1)-(4) bars denote conventional time-averages, primes denote fluctuations and the 
subscript e refers to conditions in the external flow field. 

3. THE TURBULENCE MODEL 

In order to solve the system of equations (1)-(4) closure assumptions must be made for the 
Reynolds shear stress, --pa, and the turbulent heat flux -ppUIH’. In the k--E two-equation 
turbulence model, developed for incompressible flows by Jones and the Reynolds 
shear stress and turbulent heat flux are related to the mean velocity and total enthalpy fields by 

where pT is the turbulent (eddy) viscosity and Pi”, is the turbulent Prandtl number. The turbulent 
viscosity pT is expressed in terms of the turbulence kinetic energy, k, and dissipation rate, 8, by 

and the system is ‘closed’ by introducing transport equations for the turbulence kinetic energy and 
dissipation rate: 

In equations (7)-(9) modifications for the low turbulence Reynolds number region very close to 
the wall have been incorporated so that calculations can be extended up to the wall. The values of 
the empirical ‘constants’ C,, clr c2, ok, 0, and the functions f,, fl,  f 2  are taken to bei7 

C, = 0.09, ci = 1.55, c2 = 2.0, (Tk = 1.0, (T, = 1.3 (10) 
f = 1.0, f i  = 1 - 0.3 exp ( - R:), f, = exp [ - 2 q (  1 + 0-02RT)] 

In the above, R, = pk2/p-E, pk  = ,ii + pT/ok, pLE = ,G + pT/oe  and v denotes the kinematic viscosity. 
It is assumed that the forms of the turbulence transport equations and the modelling constants 
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remain unchanged when the model is applied to compressible flows. Compressibility effects are 
accounted for by interpreting the dependent variables as mass-weighted averaged variables and by 
using the local mean density in both conservation and turbulence transport equations. It should be 
noted that formal application of mass-weighted averaging to the exact transport equations of 
turbulence kinetic energy and dissipation rate leads to partial differential equations that contain 
more terms than their incompressible counterparts. Experience with modelling the additional 
terms indicates that their influence on the quality of predictions is The viewpoint 
adopted here is that the additional terms in the k and E equations can be neglected without 
significant loss of accuracy. The resulting model is shown to be sufficiently complete to give good 
agreement with experimental data, yet simple enough to be computationally tractable. 

In the sequel, some implications of the modelling assumptions related to compressibility are 
presented by analysing the logarithmic-law region of a compressible boundary-layer flow past a 
smooth insulated flat plate at zero incidence. In this region, convection as well as molecular 
diffusion are negligible and the production of turbulence kinetic energy is equal to dissipation. 
Under these conditions, equations (2), (8) and (9) become 

and 

where u, denotes the friction velocity and subscript w denotes conditions at the wall. Furthermore, 
the non-dimensional generalized velocity 

obeys the usual incompressible logarithmic law 

where K and B are constants. 
Let 

1 
u + = - l n y + + B  

tc 

Substitution of (14) and (15) into equations ( 1  1) and (12) yields the relations 
- 2 m + 2 n - 1  *2 

(16) 
2 m - n - 1 / 2 k * 2  du* du* k 

and C , ( T ) = ( F )  __ &*2 

which reduce to the corresponding incompressible forms for rn = 1 and n = 3/2. Consequently, the 
distributions of the dimensionless k* and E* in the logarithmic-law region are given by the formulae 
of incompressible flow, i.e. 

(17) 

where k +  = k*/u,2 and E +  = E*V,/U?. 
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By substituting equations (14) and (17) in equation (13) and using the relation p,T, = pT one 
obtains 

For a boundary-layer flow over an adiabatic wall, the generalized velocity is given by 

where 

and the temperature distribution, assuming Pr = 1 for simplicity, by 

where y is the specific heat ratio and M denotes the Mach number. After combining equation (18) 
with equations (19) and (20) and a good deal of algebra, equation (13) becomes 

- + ( c ,  k2 C J E  - c 2 ) J c , + ~  U C  A,-sin ( 2m- ::)]-(r:)2Alcos(2rn$)=0 

where 

As Re --+ co, uJu, -+ 0 and consequently equation (1 3) is satisfied by the modelling constants for 
incompressible flows. Furthermore, it is evident from equations (1 7) that in the logarithmic-law 
region of a compressible boundary layer the turbulence length scale, I = C,k3"/s, reduces to its 
incompressible form, I = Cd'4~y, i.e. the turbulence structure is unaffected by compressibility. 
According to Morkovin's hypothesis2' this is valid in boundary-layer flows of Mach number less 
than 5. Consequently, one expects that our modelling assumptions concerning compressibility 
effects on turbulence hold in the non-hypersonic flow regime. However, the validity of the adopted 
approach can be assessed only by comparing computations and measurements of experimentally 
documented flows. 

4. THE TRANSFORMED INITIAL BOUNDARY VALUE PROBLEM 

Equations (1)-(9) constitute the set of governing equations for the class of flows considered in this 
work. The associated boundary and initial conditions considered are 

y = 0:U = TV = k = E = 0, R = R,(x) 
y -+ CO:U --+ u,(x), 3 H,(x), k -+ k,(x), E --+ E,(x) 

x = xg: U = U&), W I= Ri(y), k = ki(y) ,  E = E ~ ( Y )  

(21) 

(22) 

(23) 
where k,  and c, are given by the solution of the following system of differential equations 
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Although it is possible to devise numerical techniques to solve the boundary-layer equations in 
physical co-ordinates,” it is advantageous especially from the computational point of view to 
carry out a number of co-ordinate transformations and obtain alternative forms of the boundary- 
layer equations. Using appropriate co-ordinate transformations one can overcome, to some extent, 
numerical difficulties caused by the boundary-layer thickness increase in the streamwise direction 
and the presence of a singularity at the tip of a sharp body. After carrying out a number of co- 
ordinate transformations described in detail in Reference 23” the governing equations become 

in which 

*Besides the well known Illingworth-Stewartson, von Mises, and Falkner-Skan, additional co-ordinate transformations 
are employed to improve the efficiency of the computational procedure. 
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E,L(uel) 
C(5) = c2B(5) B(5) = U,k,fl(()U2(j') ' 

~3,fl(5)u4(ir)s(0 
E(') = 32E,~(oet) w-3 = c1f140, 

In the above w(5, q )  and +(c, q) are the transformed velocity and enthalpy, respectively, and U(5) 
and S(5) are related to the boundary conditions and reference parameters. Furthermore, c denotes 
the speed of sound, and u, L, k,, E ,  are transformation constants. The subscript 0 refers to stagnation 
conditions in the external stream, subscript cc to conditions at infinity, and subscript 4 signifies the 
number of transformation sets used in the present work. It should be pointed out that the number 
of differential equations has been reduced by one through the use of von Mises transformation. 

The boundary and initial conditions, equations (21)-(23), become 

q = 0 : ~  = 4 = k :: = 0 

q -+ a: w --f 1, + -+ 1, k -+ ke(g), E -+ E,( 5) 
5 = 5 0 : ~  = w~(v) ,  4 = 4i(q), k = ki(q), E = Ei(q) 

The local skin-friction coefficient and the heat-transfer coefficient defined as 

become 

where z, is the shear stress at the wall, qw is the heat transfer at the wall, Re = U,L/vo, W: = 

5. METHOD O F  SOLUTION 

The transformed initial boundary value problem, equations (25)-(31), is solved by a finite element- 
differential method. In essence, the method converts the partial differential equations into a system 
of ordinary differential equations by a weighted residuals method and invokes an ordinary 
differential equation solver for the numerical integration of the reduced initial-value problem. The 
boundary conditions at infinity, equation (30), are imposed at a sufficiently large finite distance, H ,  
from the body surface. 

For a selected H ,  the initial boundary value problem considered is governed by non-linear 
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parabolic partial differential equations of the form 

wg = WI. w, w,, W,,’ #) 

#c = @(% w, W,’ W$,% 4 9  4,? #,,I 
k, = K(5, Y, k, k,, k,,, w, W,’ 4 
&g = E(5, q, 8, E,, E,,’ w, W,’ w,,, k) 

(32) 

(33) 

(34) 

(35) 
where the subscripts 5 and q denote partial derivatives and W, a, K ,  E are non-linear differential 
operators given by the right hand sides of equations (25),  (26), (27) and (28), respectively. The 
associated boundary and initial conditions are 

w(t,  0) = 0, d4<, 0) = 0, k(t,O) = 0,4& 0) = 0 

w,(L 0) = 0, 4,(5,0) = O,k,,(t, 0) = 0, ~,(5,0) = 0 

w(5, H )  = 1,4(<, H) = 1, k(t,  

w g ,  H )  = 0, 4,(<, H )  = 0, k,(<, H )  = 0, C , ( L  f-4 = 0 

~ ( 5 0 9  Y) = wi(q), #(to, Y) = 

4 t 0 ,  V )  = ki(V), 450, Y) = Ei(V) 

(36) 

(37) 

(38) 

(39) 

(40) 

The additional boundary conditions given in equations (37) and (39) resulted from the physical 
boundary conditions and the transformations. 

= k,(t), 4<, H )  = 443 

Interpolation functions 

In the present study, the unknown functions w({, q), 4(<, q), k(<, q), E(<, q)  at a longitudinal station 
are represented by complete cubic splines. Let f(t, q )  denote any of the unknown functions w(5, q), 
#(<, q), k(<, y), E(<, q )  to be approximated by a complete cubic spline at a longitudinal station. 
Suppose that the interval 0 6 q d H is properly discretized into n elements with n + 1 nodal points 
at 0 = q1 < q2 < . . . < qn < q, + = H .  Denote the value of f(<, q)  and its derivative with respect to q 
at nodal points qi as 

For the ith element one defines the element size hi as 
h.  I = q.  r + l - V i  

and the local co-ordinate z as 

z = q - q i  O<z<hi  

Then, the cubic spline approximating f(<, q)  at a longitudinal station is given by 

where 
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and Ti(<, z), the cubic polynomials approximating f(<, y) in the ith element, is given by 

where u~,~(z), bi, l(z) and bi,,+ l(z) are known polynomials of degree three in z. It should be noted that 
the cubic spline 7 agrees with f a t  the nodes and is twice continuously differentiable in the interval 
of interest, 0 < y < H .  

A method of weighted residuals 

Owing to boundary conditions (37) and (39), equation (42) becomes 

Furthermore, if the value off(<, y) is given at y = 0 and q = H the unknowns to be determined in 
(43) are f2(5), . . . ,fq(<). Substituting equation (43) into equation (41) one obtains 

For the application of the method of weighted residuals we chose weight functions equal to the 
interpolation functions (Galerkin’s method). Accordingly, we obtain the following system of 
equations: 

(46) 1 - dk, [ if: + l(z)ui,m(z) dz d< i = l  0 

(47) -”[ di“ i = l  if: Ihiui,n+l(z)ui,m(z)dz 0 1 
In the above equations Wi is given by 

Similar relations hold for ail Ki and E,.  The system of 4(n - 1) equations, (44)-(47), can be written 
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in the matrix form 
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where [Q] is an (n - 1) by (n  - 1) constant non-singular matrix which depends on the selected 
element discretization model, (w)' = [w,, wg, .  . . , w,], (4)' = [&, ( p 3 , .  . . , Cp,,], {k}' = 
[k,, k3,-.. ,  kn], (E}' = [E,, E ~ , . . . ,  E,] and the ith elements of the vectors {rl) ,  (r2), (r3) and (r4) are 
given by the expressions on the right hand sides of equations (44), (49, (46) and (47), respectively. 
Consequently, the initial-value problem to be solved is 

where 

and 

Computational remarks 

In the process of numerical integration the definite integrals involving Wi, a,, K i  and E, in 
equations (44)-(47) must be evaluated. The right hand sides of equations (32)-(35) are very 
complex, and explicit expressions for the above mentioned definite integrals cannot be obtained. 
These integrals are effectively evaluated by a Gauss-Legendre quadrature formulaz4 

in which [kM) are the M zeros of the Mth degree Legendre polynomial and A f )  are weight factors 
associated with the Mth degree Legendre polynomial. In the present work the value M = 6 has 
been used in all computations. 

The system (49) is moderately large and stiff. This is typical for systems of ordinary differential 
equations arising from the application of the method of lines to partial differential equations.25 A 
discretization model for turbulent boundary layers at moderately high Reynolds numbers consists 
of 20 to 30 elements. This means that the solution of the initial boundary value problem, 
equations (25)-(31), with the proposed method give rise to systems of 96 to 116 ordinary 
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differential equations to be solved simultaneously. Owing to the presence of stiffness, conventional 
methods for numerical integration of the system (49) become inefficient and consequently methods 
suitable for stiff equations should be employed. In the present study a predictor-corrector method 
based on the backward difference formulae is used.26 

The method described in this section has a definite advantage over conventional finite-difference 
methods in that the streamwise integration step size is automatically controlled by preassigned 
local error tolerance  parameter^.^^ 

6. NUMERICAL RESULTS 

The accuracy and efficiency of the numerical method as well as the predictive capability of the k--E 
turbulence model have been investigated for a number of low speed, transonic and supersonic 
flows. 

Low speed flows 

As a preliminary effort, the high Reynolds number incompressible flow over a smooth flat plate 
at zero incidence has been considered. Since the computer program has been developed for 
compressible flows this case was treated as a very low subsonic flow over an adiabatic wall. To 
ensure the accuracy of the numerical solution, a number of numerical experiments have been 
conducted. It was found that H = 8.28 is sufficiently large for imposing the outer boundary 
conditions. Moreover a 24-element discretization model with element size distribution hi = 
/3*0~01,2*0~02,0~03,0-04,0~06,0~08,0~1,02,0~3,0~4,8*0~5, 3* l /  has given very accurate results 
in the Reynolds number range 7 x lo5 < Re, < 7 x 10'. Figure 1 shows a comparison between the 
calculated local skin-friction coefficient (computations based on free-stream Mach number 
Me = 0.044) and von Karman's empirical formula. The range 7 x lo5 Q Re, < 7 x lo7 is covered in 37 
steps. The size of the integration step in terms of the co-ordinate x in the physical plane is typically 5 
to 15 times the local boundary-layer thickness. The CPU time needed is 280 s on an IBM 3033N 

4.0 \ ,  c f x 1 0 3  t . 
VON-KARIIIAN FORVULA -.-.- ' \  . - PREDICTION,  K-E MODEL 

' \  

1 . 0 1  " " I  I . .. . . ' I  * 
Rex 

1 o6 l o 7  

Figure 1. Comparison of calculated local skin-friction coegcient with von Karman's formula 
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computer using double precision arithmetic. The method appears to be efficient considering the 
fact that integration of two-equation turbulence models by finite-difference methods requires very 
long CPU times.28 

Supersonic flows 

Figure 2 shows a comparison between the computed and experimental mean velocity profiles for 
the adiabatic boundary layer measured by Collins et ~ 1 . ~ ~  The agreement in this high Reynolds 
number experiment (Re, = 40,500) is excellent. In the case of the data presented by Mabey et aL3' 
at Re, = 15,000, very good agreement is achieved (Figure 3). However, the profile measured by 
Laderman and Dernetr iade~,~~ at the low Reynolds number of Re, = 3400 is very poorly 'predicted' 
(Figure 4). Table I lists the skin-friction coefficient, Cf, the boundary layer momentum thickness, 8, 
the shape factor H I 2  = a*/& and the kinematic shape factor t i 1 2 k  = 6,*/8k computed by the present 
method and those obtained from the measured data. 

In the above, 6* denotes the boundary-layer displacement thickness and subscript k denotes 
kinematic integral thickness. The various integral thickness are defined as follows: 

6* = jr ( 1 - z)  dy, S,* = jr ( I - L> dy 

The agreement with the experimental data is excellent for the high Reynolds number flows but 
deteriorates as the Reynolds number decreases. 

Y (MM 

10. 

8. 

6. 

4. 

2. 

0.  

MEASURED 

COMPUTED - 

I I 

1 .  .2 .4 * 8  1 .0 u/ue* 
Figure 4. Mean velocity profile. Laderman-Dernetriades flow 

M ,  = 3.0, Re, = 3400 
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Table I. Comparison between computed and measured boundary-layer parameters for several supersonic 
flows 

Collins-Coles-Hicks i Mabey-Meier-Sawyer j Laderman-Demetriades 

M e  = 2.18 Re, = 40,500 j M e  = 4.5 Re, = 15,000 j Me = 3.0 Re, = 3400 

Computed measurements j Computed measurements Computed measurements 

~_ 

From i From j From 

c,103 1.41 1.45 i 0.87 0.98 1 1.97 1.96 
0 (in mm) 2.2 1 2.24 / 0.535 0.527 0.312 0.535 

H 1 2 k  1.26 1.26 : ! 1.34 1.39 ! , 1.50 1.42 
HI2 3.23 3.10 9.99 8.61 i 5.44 5.44 

Transonic flows 

represents a more severe test of the turbulence model and the numerical method. In this 
experiment, the boundary-layer develops under the action of a sharp pressure rise associated with 
the presence of a shock wave. Furthermore, there is a strong favourable pressure gradient upstream 
of the interaction region. The static pressure distribution approximated by a least-squares cubic 
spline is shown in Figure 5. Figures 6 and 7 show the distribution of the boundary-layer 
momentum thickness, 8, and the boundary-layer shape factors, If,, and If, 2k, as predicted by the 
present method. The agreement with theexperimentally obtained values is good. Calculated mean 
velocity profiles upstream of the shock, in the interaction region, and downstream of the shock are 
compared with measured profiles in Figure 8. The results are generally better than those obtained 
by other turbulence models and reported in Reference 32. 

The calculation of the boundary-layer flow experimentally documented by Baker and 

P 
L 1 , I I I I * 

1.2 x /c  .2 .4 .6 .8 1.0 

Figure 5. Static pressure distribution for Baker-Squire flow (C = 0.087 m):-computed:. measured 
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.6 .8 1 .o 1.2 x /c  

Figure 6. Boundary-layer momentum thickness. Baker-Squire flow (C = 0.087 m):-computed;. measured 

1.4 I 
1. I I 1 I I I t 

.G . 7  . 8  . 9  1.0 1.1 X / C  

Figure 7. Boundary-layer shape factors. Baker-Squire flow (C = 0.087 m):-computed;. measured 

1 .o 1.0 1.0 u/u,  
Figure 8. Mean velocity profiles. Baker-Squire flow (C = 0.087 m) 
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7. CONCLUSIONS 

A Galerkin procedure with the assumed solution profiles represented by complete cubic spline 
functions is applied to a number of low speed transonic and supersonic turbulent boundary-layer 
flows. The two-equations k-e turbulence model is used in all computations. The results obtained 
show that the method can be efficient and provide highly accurate solutions over the entire 
boundary-layer region if sufficiently small elements are used close to the wall to resolve the steep 
gradients of the dependent variables in the viscous sublayer. Furthermore, the numerical results 
show that predictions based on the k-e turbulence model are in good agreement with experimental 
data for attached non-hypersonic boundary layers. The computations exhibit excellent agreement 
with measurements at high Reynolds number flows but the accuracy of the predictions deteriorates 
as the Reynolds number decreases. 
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